Refinable bivariate quartic and quintic C2-splines for quadrilateral subdivisions
نویسندگان
چکیده
Refinable compactly supported bivariate C quartic and quintic spline function vectors on the four-directional mesh are introduced in this paper to generate matrix-valued templates for approximation and Hermite interpolatory surface subdivision schemes, respectively, for both the √ 2 and 1-to-4 split quadrilateral topological rules. These splines have their full local polynomial preservation orders. In addition, we extend our study to parametric approach and use the symmetric properties of our refinable quintic spline components as a guideline to reduce the number of free parameters in constructing second order C Hermite interpolatory quadrilateral subdivision schemes with precisely six components.
منابع مشابه
Some smoothness conditions and conformality conditions for bivariate quartic and quintic splines
This paper is concerned with a study of some new formulations of smoothness conditions and conformality conditions for multivariate splines in terms of B-net representation. In the bivariate setting, a group of new parameters of bivariate quartic and quintic polynomials over a planar simplex is introduced, new formulations of smoothness conditions of bivariate quartic C1 splines and quintic C2 ...
متن کاملRefinable bivariate quartic C2-splines for multi-level data representation and surface display
In this paper, a second-order Hermite basis of the space of C2quartic splines on the six-directional mesh is constructed and the refinable mask of the basis functions is derived. In addition, the extra parameters of this basis are modified to extend the Hermite interpolating property at the integer lattices by including Lagrange interpolation at the half integers as well. We also formulate a co...
متن کاملRefinable Bivariate Quartic C-splines for Multi-level Data Representation and Surface Display
In this paper, a second-order Hermite basis of the space of C2quartic splines on the six-directional mesh is constructed and the refinable mask of the basis functions is derived. In addition, the extra parameters of this basis are modified to extend the Hermite interpolating property at the integer lattices by including Lagrange interpolation at the half integers as well. We also formulate a co...
متن کاملMatrix-valued Symmetric Templates for Interpolatory Surface Subdivisions, I: Regular Vertices
The objective of this paper is to introduce a general procedure for deriving interpolatory surface subdivision schemes with “symmetric subdivision templates” (SSTs) for regular vertices. While the precise definition of “symmetry” will be clarified in the paper, the property of SSTs is instrumental to facilitate application of the standard procedure for finding symmetric weights for taking weigh...
متن کاملNumerical Solution of Fifth Order Boundary Value Problems by Petrov-Galerkin Method with Quartic B-Splines as Basis Functions and Quintic B-Splines as Weight Functions
In this paper an efficient numerical scheme to approximate the solutions of fifth-order boundary value problems in a finite domain with two different types of boundary conditions has been prsented, by taking basis functions with quartic Bsplines and weight functions with quintic B-splines in PetrovGalerkin method. In this method, the quartic B-splines and quintic B-splines are redefined into ne...
متن کامل